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Abstract
Strong adhesion between solids with rough surfaces is only possible if at least
one of the solids is elastically very soft. Some lizards and spiders are able
to adhere (dry adhesion) and move on very rough vertical surfaces due to very
compliant surface layers on their attachment pads. Flies, bugs, grasshoppers and
tree frogs have less compliant pad surface layers, and in these cases adhesion to
rough surfaces is only possible because the animals inject a wetting liquid into
the pad–substrate contact area, which generates a relative long-range attractive
interaction due to the formation of capillary bridges. In this presentation I will
discuss some aspects of wet adhesion for tree frogs and give some comments
related to tire applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Surface roughness is the main reason for why macroscopic solids usually do not adhere to
each other with any measurable strength, and even a root-mean-square roughness amplitude of
∼1 μm is enough to completely remove the adhesion between normal rubber (with an elastic
modulus E ≈ 1 MPa) and a hard nominally flat substrate [1–3]. Biological adhesion systems
used by insects and some geckos for locomotion are built from a relatively stiff material (keratin
or chitin–protein composite with E ≈ 1 GPa). Nevertheless, strong adhesion is possible even
to very rough substrate surfaces by using non-compact solid structures consisting of either
(a) fiber-plate array structures or (b) foam-like structures [4]. In order to optimize the binding to
rough surfaces while simultaneously avoiding elastic instabilities, e.g. lateral bundling of fibers,
many biological systems (e.g. spiders and geckos) use a hierarchical building principle, where
the thickness of the fibers and plates (or walls) decreases as one approaches the outer surface of
the attachment pad [5–7]. For spiders and some lizards the thickness of the fibers and plates at
the surface of the attachment pads is so small that strong (dry) adhesion is possible even to very
rough substrates [8]. However, for most insects (flies, bugs, grasshoppers) and for tree frogs, the
thickness of the fibers and plates (or walls) is so large that negligible adhesion probably would
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Figure 1. Tree frog toe pad. The diameter of the toe pad is of order ∼1 mm. Note the hexagonal
array of cells or blocks, separated by grooves or channels. The diameter of one hexagonal block is
of order ∼10 μm. Adapted from [15].

occur to most natural surfaces if both the pad surface and the substrate surface were dry [9]1,
[10, 11]. For this reason flies, bugs, grasshoppers and tree frogs inject a wetting liquid into the
pad–substrate contact area, which generates a relatively long-range attractive interaction due to
the formation of capillary bridges. The liquid injected by insects seams to be a two-component
emulsion comprising a lipid-like fraction and water-soluble nano-droplets [12, 13]; this liquid
has been optimized by natural selection to wet most surfaces to which the insect has to adhere.
In this presentation I will discuss some aspects of wet adhesion for tree frogs, but the results
may also be relevant for other animals using smooth adhesive pads, e.g. grasshoppers [14].

2. Toe-pad contact mechanics and adhesion

2.1. Toe-pad construction

Figure 1 shows the toe pad of a tree frog [15]. Note that the pad surface is covered with
an array of hexagonal (epithelial) cells (diameter D1 ∼ 10 μm) separated by large channels
(grooves) (width W1 ≈ 1 μm, height (or depth) H1 ≈ 10 μm) that contain the fluid (watery
mucus) which provides the toe pad’s adhesive joint. Figure 2 shows a magnified view of a few
of the hexagonal cells or blocks. The surface of each of these large blocks contains peg-like
projections which we will refer to as the small blocks (diameter D2 ≈ 0.2 μm) surrounded by
small channels (see figure 3) (width W2 ≈ 40 nm, height H2 ≈ 0.2 μm).

We will assume that the (mucus) fluid wets the surface of the toe pad. The free energy of
the system is minimized when the liquid is localized to the channels, and if there is more fluid
than can be contained in the channels it will also form a thin film on the (outer) surface of the

1 In this reference it is shown that flies lose the ability to walk on inclined surfaces after walking for 15–30 min on a
silica gel substrate. This can be understood if it is assumed that walking on the silica gel drains away all the adhesive
liquid.
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Figure 2. Magnified region of tree frog toe pad. The diameter of one hexagonal cell (or block) is of
order ∼10 μm. Adapted from [15].

Figure 3. High magnification view of the surface of a single hexagonal cell showing peg-like
projections. Adapted from [15].

toe pad. However, since the evaporation rate will be much faster from this area it is possible
that under normal circumstances only the channels are filled with liquid. The liquid is secreted
from glands that open into the channels between the blocks. Measurements have shown that
the liquid viscosity η ≈ 0.0014 Pa s (i.e. about 40% larger than for water) [15]. The surface
tension of the liquid has not been measured but we will assume that it is similar to that of water,
γ ≈ 0.07 J m−2.
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Figure 4. When the frog toe pad comes into contact with a substrate surface, liquid is pulled out
from the channels because of capillary suction. If the separation h between the solid walls at the
toe-pad–substrate interface is smaller than the width W of the channels, the pressure in the film
between the toe pad and the substrate will be lower than in the grooves, resulting in the flow of
liquid into the space between the toe pad and the substrate. Since all the grooves are connected
laterally, fluid will flow laterally within the network of grooves in such a way as to conserve the
volume of fluid.

2.2. Toe-pad function: qualitative discussion

The channels between the blocks (see figures 2 and 3) may have at least three functions.

(A) The bending elasticity of the toe pad on distances larger than the size of the blocks will be
reduced by the channels; this will increase the toe-pad–substrate contact area and adhesion.

(B) The liquid stored in the channels will act as a liquid reservoir, which will facilitate fast
adhesion to rough substrate surfaces. In section 2.3 I will discuss this point, which may be
crucial for strong and fast adhesion to rough surfaces.

(C) The channels will facilitate the squeeze-out of fluid between the toe pad and the substrate,
e.g. during raining. During fast pull-off the channels between the cells at the outer
boundary of the toe pad may close, resulting in a suction-cup type of effective ‘adhesion’
on flooded surfaces, see section 3.

We now consider (qualitatively) the liquid flow at the interface upon forming and breaking
the pad–substrate contact. When the frog toe pad comes into contact with a substrate surface,
liquid is pulled out from the channels because of capillary suction, see figure 4. If the separation
h between the solid walls at the toe-pad–substrate interface is smaller than the width W of the
channels, the pressure in the film between the toe pad and the substrate will be lower than in
the grooves, resulting in the flow of liquid into the space between the toe pad and the substrate.
Since all the grooves are connected laterally, fluid will flow laterally within the network of
grooves in such a way as to conserve the volume of fluid. For substrates with large enough
surface roughness, there will be regions between the surfaces where the height h(x, y) > W ,
and when the fluid reaches such a region the flow will stop; see figure 5. During pull-off the
liquid (or part of it) may be pulled back into the grooves by capillary forces. That is, when the
separation h becomes larger than the width W of the grooves, the free energy for the system
is reduced if the liquid is transferred back to the grooves; see figure 6, where the fluid flow
direction is indicated by the vertical arrows. This ‘conservation’ of fluid may be important
during fast movement, where the frog toe pads could become dry if the liquid remained trapped
on the substrate surface.
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W

W

Figure 5. For substrates with large enough surface roughness, there will be regions between the
surfaces where the height h(x, y) > W , and when the fluid reaches such a region the flow will stop.

W

Figure 6. During separation of the toe pad from the substrate, liquid will flow back into the channels
or grooves when the separation between the solid walls is larger than the width of the channels, i.e.,
h > W . The fluid flow direction is indicated by the vertical arrows.

2.3. Wet adhesion

Let us first consider the case of flat surfaces with a network of channels as illustrated in figure 7.
If the width W of the channel is larger than the spacing h between the solid walls (as in figure 7),
the local fluid pressure in the film between the flat surfaces will be lower than in the channel,
and fluid will rapidly be sucked out from the channel. If the liquid completely wets the surfaces
the pressure in the fluid in the thin interfacial film will be of order p1 ≈ −γ /r , where the radius
of curvature r = h/2. Similarly, the pressure of the fluid in the channel will be p0 ≈ −γ /r∗,
where r∗ = W/2. The pressure difference p1 − p0 < 0 will result in fluid flow from the
channel into the space between the parallel surfaces. We can estimate the flow velocity v in the
thin liquid film between the solid walls using the equation

−∇ p + μ∇2v = 0

which in the present case, if W � h, takes the form

2γ (h−1 − W−1)/L ≈ μ12v̄/h2 (1)
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W
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Figure 7. Model problem with fluid flow between smooth flat surfaces (see the text for details).

where v̄ is the fluid velocity averaged over the thickness h of the film. Here we have used that
the fluid velocity must vanish on the surfaces z = 0 and h, i.e., v(z) = 6v̄z(h − z)/h2. If
W � h we get from (1)

v̄ = γ h/6μL . (2)

Next, since v = L̇ we get from (2)

L L̇ = γ h/6μ

or, if L(0) = 0,

L2(t) = γ ht/3μ. (3)

Thus, the time t0 for the liquid film to extend the distance L0 is given by

t0 = 3μL2
0

γ h
. (4)

We are interested in the contact between a toe pad with a network of channels, and a rough
surface. If the root-mean-square roughness of the substrate surface over the lateral size of a
big block (which is of order 10 μm) is denoted by h0, then the ‘natural’ separation between
the surfaces at the interface is likely to be of order h0. If h0 ≈ 0.1 μm and if L0 is chosen
to be of order the size of the big blocks (∼10 μm), we get for water (γ ≈ 0.07 N m−1 and
μ ≈ 0.001 Pa s) t0 ≈ 4 × 10−5 s. We conclude that the spreading of the liquid at the interface
will occur very fast, and after a short time the liquid film will cover most of the interface.
For rigid solids this will result in the maximal adhesion force of order −p0 A0, where p0 is
the (negative) pressure in the film and A0 the nominal area of the contact region. If fluid still
occurs in the large channels, p0 = −2γ /W ≈ 0.1 MPa. This stress is much larger than the
stress which is obtained if the weight of a tree frog is divided by the total toe-pad area [16]:
p ≈ 0.001 MPa. Thus the capillary stress p0 is typically ∼100 times larger than p. However,
the bond between the toe pad and the substrate is not broken uniformly over the contact area
during pull-off but rather via crack propagation (or peeling) from the periphery towards the
center (see below).

Since the total force acting on the frog must vanish (as long as the frog does not move),
the attractive capillary force −p0 A0 (plus the contribution from the weight of the frog) must
be balanced by a repulsive force acting in the area of real (atomic) contact between the frog
toe pad and the substrate. Since the regions where the solids are separated by more than just
a few nanometers of (water-like) fluid will contribute with a negligible friction force during

6
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v

Figure 8. During pull-off an opening crack propagate (velocity v) at the pad substrate interface (see
text for details).

lateral sliding, the friction force will arise almost entirely from the area of atomic contact.
Experiment have shown that when a toe pad is in contact with a smooth glass surface, the area
of atomic contact (where the surfaces are separated by at most ∼1 nm) is of order 10% of the
nominal contact area [15]. For the same system, experiments have shown that the nominal
frictional shear stress is of order ∼103 Pa (which is just large enough for the tree frog to move
on a vertical surface), so that the frictional shear stress in the area of atomic contact must be
of order ∼104 Pa. This shear stress is small compared to the shear stress which acts in most
dry sliding contacts (where, however, the normal stresses in the contact areas are much higher
(typically of order 1 GPa for glassy polymers) than in the present case), which for (glassy)
polymer materials may be of order 107 Pa. However, the shear stress is similar to what has
been observed for boundary lubricated surfaces in water. Thus, in [17] it was observed that the
shear stress is of order ∼104 Pa for mica surfaces covered by organic grafter molecules and
sliding in water.

The separation of a toe pad from a substrate occurs by crack propagation (or peeling) from
the periphery of the contact area. Because of stress concentration at the crack tip, this gives
a much smaller pull-off force than the force −p0 A0 which would result if the bonds at the
interface were to break simultaneously during pull-off. If the toe pad could be approximated as
a homogeneous spherical cup, the pull-off force would be given by the JKR expression [18]

F = 3π

2
Rγeff (5)

where γeff is the effective interfacial energy, which can be estimated as follows. Assume that
the (average) separation between the solids at the interface h � W . During separation, at the
crack edge the liquid film thickness is equal to W (see figure 8). Thus, the work (per unit area)
necessary to separate the surfaces must be γeff ≈ (W − h)p0 ≈ W p0 = W2γ /W = 2γ . Here
we have assumed that the separation speed is so low (at least until the onset of the snap-off
instability) that the fluid can flow into the grooves in such a way that the film thickness always
takes its equilibrium value W at the crack edge. Assuming that the radius of curvature of the
toe pad is R ≈ 1 cm and using the surface tension of water (γ ≈ 0.07 N m−1), we get the
pull-off force for one pad F ≈ 0.006 N. The mass of a tree frog is typically m ∼ 0.01 kg,
corresponding to the gravitational force of 0.1 N. Thus, if all the toes are attached to the
substrate, the theoretical pull-off force ∼0.1 N may be similar to the weight of the frog.

Experiments have shown that the toe-pad material of grasshoppers is highly viscoelastic
(like rubber), and the same may be true for the tree frog toe pads. Depending on the pull-off
velocity, viscoelasticity of the pad material can result in a strong enhancement of γeff. For a
(homogeneous) viscoelastic solid [19]

γeff ≈ γ0 (1 + f (T, v)) (6)
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where f (T, v) is due to viscoelastic deformation close to the crack tip, with f → 0 as the
crack tip velocity v → 0. For rubber-like materials the enhancement factor f could be as large
as 103 or 104. Recent experiments have shown that there may be a similar enhancement factor
for the toe pad of grasshoppers and most likely for smooth adhesion pads in general. Thus,
experiments by Goodwyn et al [14] found γeff ≈ 10 J m−2 for the toe pads of two different
types of grasshoppers, and since one expects γ ≈ 0.07 J m−2 due to capillary bridges one
gets f ≈ 140. This would result in a strongly enhanced pull-off force which would allow
the tree frog to adhere to even very rough surfaces inclined at any angle relative to the earth
gravitational force.

The toe-pad bulk viscoelasticity, which may result in a strong increase in γeff, may also
be important for sliding friction on rough substrates, and may result in very large sliding
friction as observed for rubber materials. Thus, during sliding the substrate asperities generate
pulsating deformations of the pad material, and if the pad material behave viscoelastically at
the perturbing frequencies a very large friction may result, as observed for rubber sliding on
rough substrates [20, 21]. We note that this is the case even if the pad and the substrate are
separated by a very thin viscous liquid film, assuming that the film thickness is smaller than
the size of the (relevant) substrate asperities. This effect has, in fact, been observed in a recent
experiment for rubber lubricated by different organic oils and sliding on a rough substrate.

3. Contact mechanics and adhesion on flooded substrates

Tree frogs can adhere and move on rough (hard) vertical surfaces during heavy raining where
the surfaces are flooded with water. This cannot be explained by the capillary-bridge picture
since no capillary bridges can form on a flooded surface. Here we will discuss how the adhesion
may be generated for flooded surfaces. We first consider the liquid squeeze-out, which is a
prerequisite for non-negligible adhesion and friction.

We consider the squeeze-out of a liquid from the interface between a solid with a flat
surface, and another solid with a surface with a network of (draining) channels. We assume
first that the inertia of the fluid can be neglected but we include the fluid viscosity. We also
consider the opposite case where the viscosity can be neglected but we include the inertia of
the fluid in the analysis.

3.1. Viscosity-dominated squeeze-out

Consider the squeeze-out of liquid from the space between two solid bodies. Assume first rigid
solids with perfectly flat surfaces without draining channels. Since in the present applications
the pressure is low, we can assume an incompressible liquid so that

∇ · v ≈ 0 (7)

−∇ p + μ∇2v ≈ 0. (8)

Assume that h(t) is the separation between the surfaces at time t . We will use simple
(dimensional) arguments to obtain an approximate form of h(t). Assume that the nominal
contact region is circular with the diameter D0. Assume that h(t) changes by the amount
�h < 0 during the time interval �t . Fluid mass conservation gives

−D2
0�h ≈ D0hv�t

or

ḣ ≈ −hv/D0, (9)

8
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where v stands for the radial component of the fluid velocity averaged over the thickness
0 < z < h of the fluid film. Since the flow velocity vanishes on the surfaces z = 0 and
h, the strongest spatial variation in v(x, t) will be derived from the variation of v with z so
that, from dimensional arguments, ∇2v ∼ v/h2. Thus, (8) gives p/D0 ≈ μv/h2, where
p = FN/π D2

0 is the squeezing pressure. Combining this with (9) gives

ḣ ≈ − αp

μD2
0

h3 (10)

where α is a number of order unity. An accurate calculation gives α = 4/3π . If the external
load FN is constant it is easy to integrate (10) to get

1

h2(t)
− 1

h2(0)
≈ αpt

μD2
0

. (11)

Next let us assume that the substrate surface has vertical draining channels as in figure 7.
Let us first consider the situation where h is so small (but not too small—see below) that nearly
all the squeeze-out of the fluid occur via the channels. Consider first the flow in one channel.
We assume that the height H1 of the channel is much larger than its width W1; see figure 7. In
this case we expect the strongest spatial variation of v(x, t) to be derived from the variation of
v with y so that, from dimensional arguments, ∇2v ∼ v/W 2

1 , where v is the flow velocity in
the channel, averaged over the channel cross section area H1W1. Thus, (8) takes the form

p/D0 ≈ μv/W 2
1 . (12)

Let us now assume a network of channels on the surface forming a square (or hexagonal)
lattice with the ‘lattice constant’ D1. Fluid mass conservation gives −ḣ D2

0 ≈ NvH1W1, where
N ≈ D0/D1 is the number of channels crossing the outer boundary of the nominal contact
area. Thus we get

ḣ ≈ −v
H1W1

D0 D1
. (13)

From (12) and (13) we get

ḣ ≈ − pW 3
1 H1

μD2
0 D1

= − αp

μD2
0

h3
0 (14)

where we have defined

h0 =
(

β
W 3

1 H1

D1

)1/3

(15)

where the dimensionless number β is of order unity. We can interpolate smoothly between the
limits (10) and (14) by using

ḣ ≈ − αp

μD2
0

(h + h0)
3 . (16)

Thus, the draining channels will effectively increase the separation between the surfaces by
distance h0, and hence facilitate the squeeze-out. Equation (16) is only valid until the film
thickness h reaches some lower critical value h1, which can be determined as follows. For
h > h1 (but h < h0) the ‘bottleneck’ for squeeze-out is the viscous resistance to fluid flow
in the channels. For h < h1 the ‘bottleneck’ for squeeze-out is instead the viscous squeeze-
out (transfer) of the liquid from the block–substrate D1 × D1 interface area to the channels. To
study this quantitatively, let us consider the squeeze-out of the liquid film from a basic unit (area
∼D2

1) to the surrounding draining channels. If the film is very thin the squeeze-out is very slow
and the fluid pressure in the draining channels will be similar to the external (atmospheric)

9
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pressure. In this case the squeeze-out of the thin fluid film into the draining channels will
be mathematically identical to the squeeze-out of the liquid between smooth surfaces studied
above (equation (10)), but with D0 replaced by D1. Thus, for a very thin fluid film we have

ḣ ≈ − αp

μD2
1

h3. (17)

We can determine h1 by the condition that the squeeze rates (14) and (17) are equal:

h3
1/D2

1 ≈ h3
0/D2

0

or

h1 = h0

(
D1

D0

)2/3

=
(

βW 3
1 H1D1

D2
0

)1/3

. (18)

From the analysis above it is clear that if the squeeze-pressure p (or the force FN) is constant
the fluid film thickness will first decrease with time as ∼t−1/2 until h(t) reaches ∼h0, which
takes the time

t0 ≈ μD2
0

αph2
0

. (19)

From here on the squeeze-out will occur mainly via the draining channels, and h(t) will
decrease linearly with time until h(t) ≈ h1. If h1 � h0 the time t1 it takes to decrease h(t) from
h0 to h1 will be (from (14)) of order t1 ≈ t0, so the total squeeze-out time to reach h = h1 will
be of order 2t0. If the basic D1 × D1 units have perfectly flat surfaces, for t > 2t0 the squeeze-
out will again follow the t−1/2 time dependence. However, the squeeze-out will occur faster
if the D1 × D1 surface units have draining channels with appropriate width W2, depth H2 and
density (see below). It is clear that for maximum squeeze-out speed the system should have a
hierarchical distribution of draining channels where a basic unit surrounded by ‘large’ draining
channels has a network of much smaller draining channels and so on. The theory above can be
used to estimate the squeeze-out time for such complex hierarchical systems. We also note that
to some extent the channels can be replaced by surface roughness. However, in this case the
squeeze-out channels will not have a uniform size but will exhibit strong fluctuations, leading
to the possibility of trapped liquid (liquid islands), in particular when the elastic deformation
of the solids is taken into account. Such trapped or ‘sealed off’ water islands have recently
been suggested to be the origin of why tires on wet roads at low car velocities exhibit ∼20–
30% smaller friction than for dry road surfaces (the trapped water effectively smooths the road
surface profile, resulting in less asperity-induced viscoelastic deformation of the rubber).

As an application, consider the tree frog toe pad. In this case D0 ≈ 1 mm, D1 ≈ 10 μm,
H1 ≈ 5 μm and W1 ≈ 1 μm. Thus, h0 ≈ 1 μm and h1 ≈ 50 nm. Using the measured viscosity
(similar to that of water) μ = 0.0014 Pa s, and p = 104 Pa (typical frog toe squeezing stress),
we get the squeeze-out time 2t0 ≈ 0.1 s.

Assume that the film thickness h < h1. In this case, for D1 × D1 units with perfectly flat
surfaces the bottleneck in the squeeze-out is the transfer of the liquid to the draining channels.
In this case the squeeze-out will speed up if, in addition to the large draining channels discussed
earlier, the substrate is covered by a network of smaller channels (width W2 and depth H2) with
‘lattice constant’ D2. For this case, for the time interval where h1 < h < h2 (where h2 is
defined below), the film thickness satisfies

ḣ ≈ −αβW 3
2 H2 p

μD2
1 D2

. (20)

10
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This equation only holds as long as h > h2, where h2 is determined in an analogous manner
to how h1 was determined. Thus, when h = h2 the rate (20) equals the squeeze rate for a flat
surface of size D2 × D2:

ḣ ≈ −α
ph3

μD2
2

.

This gives

h2 ≈
(

βW 3
2 H2D2

D2
1

)1/3

(21)

and the time to reduce the film thickness from h1 to h2 will be of order

t2 ≈ μD2
1 D2h1

αβ H2W 3
2 p

. (22)

For the frog toe pad, H2 ≈ D2 ≈ 200 nm and W2 ≈ 50 nm. Using p ≈ 104 Pa and
μ ≈ 0.0014 Pa s, we get h2 ≈ 6 nm and t2 ≈ 0.001 s. Thus, we conclude that within
∼0.1 s the tree frog is able to squeeze out the liquid from the toe-pad contact area down to a
distance of order a few nanometers. This analysis has neglected both surface roughness and
the finite elasticity of the solid walls. It is well known that for elastically soft solids the latter
may be very important, and studies for rubber have shown that it can give rise to (dynamically)
trapped liquid islands in the contact region.

3.2. Inertia-dominated squeeze-out

In the study presented in section 3.1, all the resistance to squeeze-out comes from viscous
dissipation as the fluid flow between closely spaced surfaces. Assuming no slip, the fluid
velocity must vanish on the solid surfaces, which will result in very large shear velocity
gradients in the narrowest spacings, and this leads to large viscous energy dissipation and to
large resistance against squeeze-out. For squeeze-out at large separation between the solid
walls, and for high squeeze-out velocities, it is instead the inertia of the liquid which will
determine the squeeze-out speed. Thus, to remove the liquid rapidly between solid surfaces,
very large acceleration of the liquid is necessary. This limiting case is not relevant for tree
frog adhesion (see below), but may be very important for the squeeze-out of the water between
tires and flooded road surfaces. This problem can also be studied using simple (dimensional)
arguments.

Consider first a fluid layer (thickness h(t)) between perfectly flat solid walls squeezed
together with the force FN. The variation of h(t) with time can be obtained (approximately)
from the following very simple energy conservation condition. The work to squeeze the solids
together by the distance −�h is given by −FN�h. We assume that this energy is converted
into translational energy of the (squeeze-out) liquid. If v is the radial velocity of the liquid at
the edge r = R0 = D0/2 of the contact zone then the kinetic energy of the liquid leaving the
contact zone during the time period �t becomes �mv2/2, where �m = ρ2π R0hv�t is the
mass of the squeezed-out liquid. Energy conservation gives

−FN�h ≈ �mv2/2

or

ḣ

h
= − v3ρ

R0 p
(23)

11
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where the squeezing pressure p = FN/π R2
0 . Mass conservation gives π R2

0(−�h) =
2π R0hv�t or

v = − R0

2

ḣ

h
. (24)

Combining (23) and (24) gives

ḣ = −h/τ (25)

where the characteristic squeeze-out time

τ =
(

R2
0ρ

8p

)1/2

. (26)

From (25) we get

h(t) = h(0)e−t/τ . (27)

Rubber friction on wet road surfaces is due to the viscoelastic deformation of the rubber by
the road surface asperities. Since road surfaces are fractal-like, a wide distribution of asperity
sizes occur but a detailed study has shown that typically only surface roughness wavelength
components larger than ∼1 μm will contribute to the rubber friction. The analysis below shows
that when the water film thickness reaches ∼10 μm the squeeze-out dynamics is dominated by
the water viscosity rather than the water inertia. Thus, if the initial water film on the road has the
thickness ∼1 cm it will take time t ≈ τ ln(104) ≈ 7τ to squeeze out the water down to the film
thickness of order 10 μm. If we assume R0 ≈ 0.1 m and p ≈ 0.4 MPa, this gives squeeze-out
time ∼0.01 s. During rolling at speed v the squeeze-out time for slick tires (i.e. tires without
tread pattern) is of order 2R0/v. Thus, for slick tires the car velocity can be at most 20 m s−1 or
∼60 km h−1 in order for the water film thickness to become of order (or smaller than) 10 μm.
This rough estimate is in good agreement with experimental observations, but a more complete
treatment should include the substrate roughness in the analysis, which will tend to speed up
the squeeze-out.

Note that the condition 7τ ≈ 2R0/v can be written as

v ≈ (p/ρ)1/2 (28)

which does not depend on the size R0 of the tire–road footprint.
Tires for passenger cars have draining channels to speed up the removal of water from

the tire–road footprint area under wet road conditions; see figure 9. In this context the word
‘draining’ is actually not appropriate as the function of the channels is not to drain the water
from the footprint area but to move the water from one region in the footprint area to another
region in the footprint where it can cause no harm. That is, the channels or voids act as empty
volumes into which the water under the tread blocks in the footprint area can be transferred
without accelerating it to such high speed as would be necessary for slick tires (i.e. tires without
tread pattern). If the water film thickness on the road surface is small enough, the water under
the tread blocks can be transferred to the channels without completely filling them. In this
case the squeeze-out formula derived above can still be used, but with R0 being replaced by
the lateral size of a tread block, which typically is of order a ∼ 2 cm. Thus the squeeze-out
speed is increased by a factor of R0/a ∼ 5 and a complete separation of the tire from the road
(aquaplaning) will not occur under normal driving circumstances, unless the water film is so
thick that there is not enough space for it in the channels. We note that while the size of the
tread block matters a lot for the ability to remove the water, the actual tread design is not very
important and is decided by the tire makers’ marketing people. Winter tires have in addition to
the large wide channels typical of summer tires a dense network of very thin vertical cuts. It
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Figure 9. Tire with a network of wide and narrow channels.

is clear that these cuts cannot absorb any large volume of displaced water (as compared to the
large more widely spaced channels), but may be very important to increase the tire–road grip
on snow-covered road surfaces.

Equation (25) is valid when the film thickness is so large that the liquid viscosity can be
neglected. Equation (10) is valid in the opposite limit, where the film thickness is so small
that the squeeze-out is dominated by the fluid viscosity. The (critical) film thickness h∗ where
one switches from inertia-dominated squeeze-out (h > h∗) to viscosity dominated squeeze-out
(h < h∗) is obtained when the two squeeze-out speeds (10) and (25) become equal. We get

h∗ ≈
(

(μR0)
2

pρ

)1/4

. (29)

For tire applications this gives h∗ ≈ 10 μm. Thus, if the initial water film thickness is 1 mm
the theory developed in section 2.1 cannot be used to determine the film thickness until we
reach the viscosity-dominated era, which starts when h ≈ 10 μm; see figure 10. For the frog
adhesive pad with R0 ≈ 1 mm and p ≈ 104 Pa we get h∗ ≈ 10 μm. However, the theory above
shows that the reduction in the film thickness from 1 mm to 10 μm takes less than 0.001 s, so
the inertia-dominated squeeze-out era can be neglected.

3.3. Adhesion on flooded surfaces

It has been observed that tree frogs are also able to adhere and move on vertical solid walls
during heavy rain, where the substrate surface is flooded by water [16]. The reason for this
is non-trivial, because under flooded conditions it appears (but see below) that no capillary
bridges can form and one would therefore expect a negligible force to separate the surfaces, at
least during slow separation. Here I will analyze this remarkable problem and suggest some
explanations.
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tire

inertia viscous

v

Figure 10. When a tire is rolling or sliding on a wet substrate, the liquid will be squeezed out
from the (apparent) contact region between the tire and the road. In general one can distinguish
between two regions: a region close to the front of the tire–road footprint area, where the squeeze-
out dynamics is dominated by the inertia of the water, and another region, where the water film
thickness is very small and where the viscosity of the water determines the squeeze-out dynamics.

3.3.1. Long-range interactions between solids in liquids. Solid surfaces in water sometimes
interact with long-range forces derived from ion absorption on their surfaces [22]. Such forces
can be both attractive (if the charges of the adsorbed ions on the two surfaces have opposite
sign) and repulsive [22]. However, it is very unlikely that such forces are of any relevance for
attachment systems in animals because animals must be able to adhere to many different types
of surface (such as stone or leaf) with very different properties, and it is highly unlikely that
these surfaces, if at all charged, would have the same sign of the charges (and opposite to that
of the animal toe-pad surface).

The long-range van der Waals interaction will also act between solids separated by a thin
water layer. While the van der Waals interaction always is attractive between solids in vacuum,
it can be either attractive or repulsive in a liquid [23]. However, it is highly unlikely that this
interaction is important for animals which secrete a liquid because if it would be important in
water, it would (usually) be even more important when no liquid separate the surfaces, and the
animal would not need to secrete any liquid at all. Thus, it is highly unlikely that any long-range
interaction is of important for animal locomotion on water covered surfaces.

3.3.2. Dewetting transition. Complete liquid removal from the region between closely spaced
solids has been studied both experimentally and theoretically for several years [24, 25]. A liquid
film confined between two elastic solids with flat surfaces is thermodynamically unstable if

γ1L + γ2L − γ12 > 0, (30)

where γ1L and γ2L are the solid–liquid interfacial energies and γ12 the solid–solid interfacial
energy. In this case squeeze-out of the liquid may start by the formation (due to a thermal
fluctuation) of a small dry patch, which then spreads laterally until the whole liquid film is
expelled. However, for water this relation is unlikely to be obeyed for all surfaces to which the
animal must be able to adhere. Thus stones, for example, are likely to have polar surfaces which
are wet by water, and it is unlikely that (30) will be obeyed for these substrates. In addition, if
the liquid were removed by a dewetting transition, then the contact region would be dry, but we
already know that the adhesion for the dry contact most likely is negligible (it is for this reason
that the tree frog injects a wetting liquid into the contact area).

3.3.3. Viscous ‘adhesion’. When two closely spaced surfaces are separated rapidly in a liquid,
strong effective adhesion may occur between the solids. The origin of this effect is the viscosity
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of the liquid: because of the viscosity, if the separation between the surfaces is very small it will
take a long time for the liquid to flow into the ‘empty space’ generated during the separation
between the solids. This can result in a large negative pressure and even cavity formation
between the surfaces of the solids [26, 27]. This ‘viscous adhesion’ is a dynamical effect and
disappears if the surfaces are separated very slowly. For rigid flat walls the magnitude of the
attraction can be estimated from (10): when ḣ > 0 (separation) (10) gives p < 0, i.e. an
effective attraction prevails between the solid surfaces during separation. A large pull-off force
is only observed if the separation h between the solid is very small (or the pull-off speed very
high). That is, before strong adhesion is possible the liquid must be nearly completely removed
(squeezed out) from the region between the surfaces. An accurate analysis of this problem
requires in general that one includes the elastic deformation of the solids when determining the
pull-off force.

In section 3.1 we showed that the squeeze-out is facilitated by a network of draining
channels on the surface of the adhesion pad. Here we note that while these channels are ‘open’
during squeeze-out they may be closed during pull-off, at least close to the boundary of the
contact region. The reason for this is that during pull-off there is lower pressure inside the
contact area than outside, and there will be lateral (radial) forces acting tending to compress
the contact area laterally, and this may close the space between the hexagonal units. This will
slow down the flow of liquid into the region between the surfaces, which may strongly increase
the pull-off force.

4. Summary and conclusion

Tree frogs and most insects use wet adhesion to adhere and move on many different surfaces,
e.g. glass windows, stone walls or plant leaves. I have discussed the origin of adhesion
and friction for the tree frog but the results may be relevant for other animals using smooth
adhesion pads, e.g. grasshoppers. In fact, the similarity between the adhesion pads of tree
frogs and grasshoppers is very great, indicating highly optimized (by natural selection) and
unique adhesive systems. Some of the results presented above may also be relevant for some
technological applications, e.g. tires on wet road surfaces.
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